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We calculate the average transmission fors- andp-polarized electromagnetic~EM! waves and consequently
the localization length of two-dimensional~2D! disordered systems which are periodic on the average; the
periodic systems form a square lattice consisting of infinitely long cylinders parallel to each other and embed-
ded in a different dielectric medium. In particular, we study the dependence of the localization length on the
frequency, the dielectric function ratio between the scatterer and the background, and the filling ratio of the
scatterer. We find that the gaps of thes-polarized waves can sustain a higher amount of disorder than those of
the p-polarized waves, due to the fact that the gaps of thes-polarized waves are wider than those of the
p-polarized waves. For high frequencies, the gaps of both types of waves easily disappear, the localization
length is constant and it can take very small values. The optimum conditions for obtaining localization of EM
waves in 2D systems will be discussed.

I. INTRODUCTION

Recently, there has been growing interest in the propaga-
tion of electromagnetic~EM! waves in random media.1–4

This problem is closely related to the electron transport in
disordered solids, although phenomena similar to electron-
electron and electron-phonon interactions are not present in
the EM case, so, one expects that this is an ideal case to
study the variety of complex effects related with the scatter-
ing of waves in random media.

For relatively weak disorder, an enhanced backscattering,
as a result of the interference between time-reversed waves,
has been observed in light scattering experiments5,6 and it is
well understood theoretically.7,8 By increasing the disorder,
the interference of the waves due to the strong scattering
creates more and more exponentially localized states and af-
ter a certain critical value of the disorder all the states be-
come localized and the diffusion coefficient vanishes.1–4 It is
by now well known that for one- and two-dimensional~1D
and 2D! systems, an infinitesimal amount of disorder is
enough to make all the states localized~except some special
models which do not follow this rule9!, while for three-
dimensional~3D! systems, the states become localized only
when the disorder is higher than a finite value.10,11However,
there is no conclusive experimental evidence for the local-
ization of EM waves in either 2D or 3D systems, although
experiments by Genack and collaborators12 provide some in-
dications that light localization is possible.

The difficulty in localizing EM waves had led to sugges-
tions of alternative pathways to localization. John13 has pro-
posed that EM localization may be more easily achieved in a
weakly disordered system of an almost periodically arranged
dielectric system in the frequency regime near a band gap.
We can very reliably calculate the bands and the gaps of a
periodic system. It is very plausible that a connection be-
tween the gaps in the periodic system and the regions of
localized states in a random system exist,14,15 at least for
weak disorder. Indeed, in that case the regions of localized
states~being at the tails inside the gaps! practically coincide
with the positions of the gaps.

Recently, McGurnet al.16 studied the propagation of light
of frequency,v emitted radially from a line source in an
infinite 2D disorder dielectric medium by numerically inte-
grating Maxwell’s equations in space and time. Their system
consisted ofN3N identical rods of square cross section and
dielectric constante, that fill a supercell without chinks or
overlaps. They introduced disorder by removing half of these
rods randomly and replacing them by vacuum~the filling
ratio of that system is 0.5!. They found that high frequencies
and high dielectric contrasts favor localization with small
values of the localization length. However, their estimations
of the localization lengths should be regarded only as indi-
cations of their order of magnitudes.16

In this paper, we study the optimum conditions for the
appearance of the gaps in 2D periodic dielectric systems and
how those conditions are related with the scattering cross
section of a single scatterer~Sec. II!. The 2D systems consist
of infinitely long cylinders parallel to thez axis embedded in
a different dielectric medium; the EM waves propagate in the
x,y plane. Then, disorder is introduced in the 2D systems
described previously by either randomly changing the radius
of the cylinders, or randomly moving the cylinders away
from their periodic positions, or randomly changing the di-
electric constant of the cylinders. Although, we expect that
all the states become localized with the smallest amount of
disorder, there is still the question of what are the optimum
conditions for the appearance of the smallest localization
length. An answer to that question is very important since
that will help the experimental observation of the localiza-
tion of EM waves in 2D systems. In Sec. III, we answer that
question by considering the different factors which affect the
frequency-dependent localization length such as the amount
of disorder, the filling ratio, and the ratio of the dielectric
constant between the two media. We find thats-polarized
waves give the smallest localization lengths for cylinders
with a high dielectric constant, when the filling ratio is
around 25%. The gaps of thep-polarized waves are de-
stroyed easily by the disorder.

Periodic systems similar with the ones that we study in
the present work have already been studied both experimen-
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tally and theoretically.17–21Disorder can be introduced easily
in those systems by either moving apart the cylinders or by
changing their radius, so, one can verify the present results
experimentally. Also, the effect of the disorder in the gaps is
very important especially in applications where we want to
construct materials in smaller dimensions~of the order of
microns!.1,4 In those cases, the introduction of a disorder
similar with those studied in the present work is almost in-
evitable and one wants to know what is the highest amount
of disorder for which the gap disappears. This question is
clearly answered in the present work.

II. PERIODIC

For EM waves propagating in thex,y plane, thes (E field
parallel to thez axis! andp (E field perpendicular to thez
axis! polarized waves can be described by two decoupled
wave equations. The equation for thes-polarized wave is

¹2E1
v2

c2
eE50, ~1!

whereE5Ez , e5e(r ) is the dielectric constant,v is the
frequency, andc is the speed of light in the vacuum. Equa-
tion ~1! is identical with the scalar wave equation. The equa-
tion for thep-polarized wave has the form

¹S ¹H

e D1
v2

c2
H50, ~2!

where H5Hz . Using the plane-wave~PW! expansion
method, we can solve the previous two equations for a peri-
odic lattice17–21 and therefore find the band structure,
v(kW ).

We have made a systematic effort in order to find the
optimal values of the filling ratio,f , and the ratio of the
dielectric constantm for the creation of a gap in 2D square
lattices, for both thes and p polarization. The minimum
value of the relative dielectric constant,m, for creating a gap
is obtained for both dielectric and air cylinders. In Fig. 1, the
calculated size of the forbidden gap over the midgap fre-
quencydv/vg versus the filling ratio of the cylinders,f , for
a constant dielectric ratio,m510, is shown. Fors-polarized
waves, a maximumdv/vg of 33% ~30%! appears when
f50.20 ~0.80! for high ~low! dielectric constant cylinders,
respectively. For thep-polarized waves and low dielectric
cylinders,dv/vg can only reach 8% atf50.50. However,
for the p-polarized waves and high dielectric cylinders with
m510, there is no gap for anyf .

Another interesting information is how easily a band gap
can be formed. In particular for certain value off , what is
the lowest dielectric constant that forms a gap? We plot in
Fig. 2 the threshold value of the dielectric constant ratio,
m, for which the first gap just opens, versus the filling ratio
of the cylindersf . The results fors-polarized waves@Fig.
2~a!# are the following: for high dielectric cylinders, the low-
est gap appear whenm53.0 andf525%, while for the op-
posite case of low dielectric cylinders in a high dielectric
medium, the threshold value ism57.98 andf570%. For the
p-polarized case@Fig. 2~b!# of high dielectric cylinders, the

lowest gap appears whenm515 and f540%, while in the
opposite case of low dielectric cylinders,m54.4 and
f555%.
From the present and previous results,19 one concludes

that for thes-polarized waves the optimum conditions for the
appearance of the gaps are obtained whenf is around 0.25,
for the case of high dielectric cylinders in a low dielectric
medium. On the other hand, for thep-polarized waves, the
optimum conditions are obtained whenf is around 0.50, for

FIG. 1. Gap over midgap frequency fors-polarized waves vs the
filling ratio of the cylinders forming a 2D square lattice embedded
into a different medium. Solid and dashed lines are for cases where
the cylinders are the high and low dielectric material. The dielectric
constant ratio between the two media is 10.

FIG. 2. The threshold value of the dielectric constant ratio,m,
for which the first gap just opens, vs the filling ratio,f , for s ~a! and
p ~b! polarized waves. Solid and dashed lines correspond to cylin-
ders of high and low dielectric materials, respectively.
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the case of low dielectric cylinders in high dielectric me-
dium; however, the size of the gaps are small even with that
optimum condition.

Can we interpret the behavior of the band gaps presented
in Figs. 1 and 2, by the Mie resonant scattering from a single
dielectric cylinder? The behavior of the scattering cross sec-
tion, s, for an isolated cylinder of high dielectric material
(e510) in air is shown in Fig. 3~a!. Notice that the first three
resonances of thes polarization atd/l i50.3, 0.7, and 1.25
are very sharp@dashed line in Fig. 3~a!#; in contrast, for the
p-polarization @solid line in Fig. 3~a!# the corresponding
three first resonances are weaker and they appear at higher
frequencies. We have chosen to present the results for the
total scattering cross section versus frequency, asd/l i ,
whered is the diameter of the cylinder andl i52pc/vAe i is
the wavelength inside the cylinder. In this 2D case too, the
positions of the gaps in periodic 2D dielectric structures can
be associated with the Mie resonance frequencies of the iso-
lated cylinder. For an isolated air cylinder in a dielectric
medium withe510, the scattering cross section@Fig. 3~b!# is
very similar for both polarizations and it exhibits an oscilla-
tory behavior; the differences are more prominent for the
first two Mie resonances where they are stronger for thep
polarization. Comparing the results for thes polarization
@dashed lines in Figs. 3~a! and 3~b!#, we conclude that cyl-
inders of high dielectric material can create more scattering

than the opposite case and this obviously explains why the
gaps in the corresponding periodic case appear easier for the
s polarization and they are wider. On the other hand, com-
paring the results for thep polarization@solid lines in Figs.
3~a! and 3~b!#, we conclude that the strength of the reso-
nances is nearly the same for cylinders of either the low or
the high dielectric material, so, we expect that the gaps will
appear equally difficult in both cases, as it is really the case.

III. DISORDER

In this section, we systematically study the behavior of
the frequency-dependent transmission coefficient as a func-
tion of the strength of the disorder and how the gaps of the
periodic case are affected by the introduction of the different
types of disorder. The transfer-matrix method~TMM !, intro-
duced recently by Pendry and MacKinnon,22 has been used
for the calculation of the transmission. In that method, the
space is divided in small cells and the fields in each cell are
coupled with those in the neighboring cells; then the transfer
matrix can be defined by relating the fields on one side of the
material’s slab with those on the other side. So, the transmis-
sion and reflection coefficients for EM waves of various fre-
quencies incident on a finite thickness material can be ob-
tained; the system assumed periodic in the directions parallel
to the interfaces. The method has been used in
two-dimensional23 and three-dimensional24 structures as well
as in cases where the dielectric constant is complex and fre-
quency dependent.25,26 In all the cases, the agreement be-
tween theory and experiment is very good.

The disorder can be introduced by three different ways.
First, by randomly changing the radius of each cylinder
while they are keeping their periodic positions; in that case
the radius of thei th cylinder is given byr i5(11g)r where
r is the radius of the cylinder used in the periodic lattice and
g is a random variable uniformly distributed over the interval
@2dr ,dr #, so,dr measures the strength of the disorder. Sec-
ond, by moving the cylinders from their ideal 2D periodic
positions, so thex andy components of the position of the
i th cylinder in the random system differ from those of the
periodic case bygxa andgya, respectively;gx , gy are ran-
dom variables uniformly distributed over the interval
@2d,d# anda is the lattice constant of the periodic system.
Third, by changing the dielectric constant of each cylinder;
in that case, the dielectric constant of thei th cylinder is
e i5(11g)e wheree is the dielectric constant of the cylin-
ders in the corresponding periodic case andg is a random
variable uniformly distributed over the interval@2de ,de#.
For the first two types of disorder, some of the cylinders may
overlap when the amount of disorder is higher than a certain
value which depends on the filling ratio. The second type of
the disorder, the random displacement of the dielectric cyl-
inders, is the easiest to experimentally implement.

As we have pointed in the Introduction, for 2D systems,
all the states will become localized even with the smallest
amount of disorder and the localization length,l , is given
by10,11

l52
2L

^ ln~T!&
, ~3!

FIG. 3. Scattering cross section ofs- and p-polarized waves
~dotted and solid lines! incident on a cylinder embedded in a dif-
ferent medium vs the frequency. Cylinders of high- and low-
velocity material correspond to~a! and~b!, respectively. The dielec-
tric constant ratio between the two media is 10.
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where thê ln(T)& is the logarithmic average of the transmis-
sion over the different configurations. In all the following
cases, the average lattice is a square with cylinders of circu-
lar cross section and filling ratio,f , and the waves propagate
along they axis while the axis of the cylinders is along the
z axis. The thickness of the system~along they axis! is L, its
width ~along thex axis! isW, and the lattice constant of the
corresponding periodic system isa51.28 cm~the results can
be scaled in any lattice constant!. A supercell which includes
three cylinders along thex axis (W53a) is used with peri-
odic boundary conditions at the edges of the supercell. We
studied the effect ofW in a system similar to the one de-
scribed in Fig. 4 withd50.4 and we found that there is a
convergence of thêln(T)& for almost all the frequencies as
we increase theW/a from three to four. According to the
scaling hypothesis for localization,10,11 this indicates that the
waves are localized. Due to computer time constraints,
^ ln(T)& is calculated from an average over 10 configurations
which gives less than 20% error in the value of^ ln(T)&. Fi-
nally, each unit cell is divided into 10310 points; calcula-
tions with higher divisions per unit cell have less than 5%
difference with the present results.

Figure 4~b! shows thê ln(T)& versus the frequency for a
system consisting of cylinders with dielectric constant

e i510 and f50.28 embedded in air; the thickness is
L525a, theE field of the wave is parallel with the axis of
the cylinders (s polarized!. For the periodic case@solid line
in Fig. 4~a!#, there are two sharp drops in the transmission
which correspond to the first two gaps and some smaller
drops which correspond to the higher gaps. Comparing the
position of the gaps with the Mie resonances@dotted line in
Fig. 3~a!#, we conclude that the gaps appear between the Mie
resonance frequencies. In particular, the first three Mie reso-
nances appear at 4.5, 9.1, and 14.5 GHz, while the first two
gaps appear at around 6 and 11.5 GHz. With the introduction
of the first type of disorder where the radius of the cylinders
changes randomly, the higher gaps disappear even with a
small amount of disorder@dr50.2, dotted line in Fig. 4~a!#
while the first two gaps survive; especially the first one sur-
vives for dr as high as 0.4. For thep-polarized waves@Fig.
4~b!#, there are three large drops in the transmission of the
periodic case@see solid line in Fig. 4~b!#, but they do not
correspond to full gaps since, as we have mentioned in the
previous section, there are no full gaps for that polarization
and fore510. For that reason, those drops disappear easily
with the introduction of the disorder; fordr50.2 @dotted line
in Fig. 4~b!#, only the first drop survives, although much
smaller, while, fordr50.4 @dashed line in Fig. 4~b!#, there
are no drops.

There are some common characteristics of the average
transmission for both polarizations. For relatively high fre-
quencies (v higher than about 20 GHz in our case, or, in
general,v higher than aboutc/a), ^ ln(T)& is almost inde-
pendent of the frequency; we shall refer to that value as
^ ln(T)&s , the saturated value of^ ln(T)&. Also, this value is
almost independent on the amount of the disorder within the
accuracy of our statistical average. In particular, for
p-polarized waves,̂ln(T)&s is about26 @Fig. 4~b!# for both
dr50.2 and 0.4 while for thes-polarized waves,̂ln (T)&s is
about26.5 @Fig. 4~a!#. Similar conclusions have been found
for one-dimensional random bilayer systems27 and they have
been explained as follows: At high frequencies~small wave-
lengths! the phase coherence between the scattering at differ-
ent interfaces is lost and the dominant factor is the scattering
from each interface. But, the transmission and reflection co-
efficients at a sharp interface are frequency independent,
therefore thê ln(T)& andl are also frequency independent at
high frequencies.27 In the present 2D case, for high frequen-
cies, one expects the geometric limit to be reached and the
dominant scattering factor to be from the interface, so,
^ ln(T)& will be frequency independent. On the other hand, at
low frequencies~high wavelengths!, the wave is not affected
by the inhomogeneity of the system, but it essentially ‘‘sees’’
a uniform medium with an effective dielectric constant, so,
we expect that̂ ln(T)& tends to zero as the frequency ap-
proaches zero and it is independent of the thickness of the
system and the amount of the disorder. This is clearly shown
for thep polarization in Fig. 4~b!; ^ ln(T)& is almost the same
as in the perfect case for frequencies less than 6.5 and 5 GHz
for the dr50.2 and 0.4 cases, respectively. For thes polar-
ization, this happens for frequencies smaller than 4 GHz
which is the lowest frequency in our calculations.

At intermediate frequencies, the drops of the^ ln(T)& are
actually reminiscent of the corresponding gaps of the peri-
odic case. Our calculations show that the wider the gap of the

FIG. 4. ^ ln(T)& vs the frequency for 2D disordered media with
dr50, 0.2, and 0.4~solid, dotted, and dashed lines, respectively!
ands- andp-polarized waves@~a! and ~b!#. The filling ratio of the
cylinders is around 0.29; the dielectric constants are 10 and 1 in the
cylinders and in the surrounding medium respectively; the lattice
constant isa51.28 cm and thethickness of the system is
L525a.
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periodic case is, the larger the amount of disorder needed to
close it. At frequencies inside the gaps, the^ ln(T)& and the
localization length increases by increasing the disorder as a
result of the fact that the density of states~DOS! become
higher due to the creation of localized states inside the
gap.27–30 In order to find how the different types of disorder
affect the gaps we plot~Fig. 5! the localization length of
s-polarized waves at 6.5 GHz@this is in the middle of the
first gap; see Fig. 4~a!# as a function of the rms error of the
dielectric constant,A^e2&. This is defined as

^e2&5K 1N(
i51

N

~e i
d2e i

p!2L , ~4!

where e i
d , e i

p are the dielectric constants at sitei in the
disorder and the periodic case respectively;N is the number
of sites in the system and̂•••& means an average over dif-
ferent configurations. Notice thatl increases, initially, as the
disorder increases, against the usual expectations. The local-
ization length is around 1.5a for A^e2& less than about one
and then increases. As we explained previously, this is due to
the fact that the DOS increases in that particular range of
frequencies. However, we expect that for high amount of
disorder (A^e2& higher than the values that we have used in
our calculations!, the localization length will start decreasing
because the DOS will eventually reach its maximum value
and the localization effects will become dominant. The be-
havior is very similar for disorder in the dielectric constant as
well as in the radius of the cylinders~compare dashed and
solid lines in Fig. 5!. For the case with randomness in the
position of the cylinders,A^e2& reaches a constant value
when the strength of the disorder,d, is higher than about 0.5
and that causes difficulties in getting any conclusions.

Complimentary and additional information can be ob-
tained by examining the effect of the disorder on the density
of states~DOS! of the system. The density of states is ob-
tained by an order (N) spectral method, which is discussed
in detail elsewhere.31 Briefly, the method integrates Max-
well’s equations numerically in the time domain, and the
spatial derivatives~the ‘‘curls’’ ! are determined by finite dif-
ferences. TheE andH fields are stored as time series, and

when a sufficient number of time steps have been accumu-
lated ~which governs the resolution in the frequency do-
main!, the field intensities are Laplace transformed from the
time domain to the frequency domain to obtain the spectral
intensities. If the initial fields correspond to random num-
bers, the spectral intensities would correspond to the density
of states of the system under consideration. The following
results are obtained with a supercell containing 64 unit cells
(838), and each cell is discritized by a 32332 grid. Peri-
odic boundary condition is imposed. For 2D systems, the
Maxwell equations decouple toE-polarized modes and
H-polarized modes, so that we can define a DOS for each
polarization.

The DOS of theE-polarized modes (s polarization! for
the case of no disorder and disorder in radius withdr50.2
and 0.4 are compared in Fig. 6. We note from Fig. 6~a!,
which shows the DOS for the perfect structure, that there are
spectral gaps for this polarization centered at about 6.5, 11.5,
and 16 GHz and they will be referred to as the first, second,
and the third gaps, respectively. These spectral gaps give rise
to the corresponding dips in the transmission coefficients in
Fig. 4~a!. The transmission results in Fig. 4~a! seem to indi-
cate that the first gap is bigger than the second gap. In fact,
the second gap is bigger, as can be seen in the DOS results.
The apparent difference is due to the fact that transmission
results correspond to one direction of propagation, while
DOS results correspond to those of all directions. The trans-

FIG. 5. Localization length,l , at 6.5 GHz for the system de-
scribed in Fig. 4~a! vs the rms error of the dielectric constant,
A^e2&. Results for randomness in the radius~squares! and the di-
electric constant~circles! of the cylinders are shown.l is normal-
ized to the lattice constant.

FIG. 6. Total density of states~DOS! of s-polarized waves
propagating in a system similar with the one described in Fig. 4.
One configuration has been used withdr50, 0.2, and 0.4@~a!, ~b!,
and ~c!, respectively#.
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mission at the midgap of the second gap in the transmission
results in Fig. 4~a! is smaller than that of the first gap, con-
sistent with the fact that the second gap is actually bigger.
When a disorder in radius corresponding todr50.2 is intro-
duced@Fig. 6~b!#, the third gap is already closed completely.
The second gap is almost closed, and has become a
pseudogap with a strong depletion in DOS. The first gap
survives, the disorder in the radius has only made it smaller.
These observations can be used to interpret the transmission
results in Fig. 4~a!: The dip corresponding to the third gap
disappeared, the transmission in the second gap increased
substantially and becomes very narrow, corresponding to the
imminent closing of the gap, while the dip corresponding to
the first gap is just reduced in width. With a disorder
dr50.4 introduced@Fig. 6~c!#, all the gaps are destroyed,
leaving behind a dip in the DOS corresponding to what used
to be the first gap in the perfect structure. This again corre-
lates well with the transmission results in Fig. 4~a!. For the
case ofdr50.2, we have results for five different realizations
of the randomness~by using different seeds in the random-
number generator!; and the results are basically the same: the
third gap is closed entirely, the first gap survived but is re-
duced in size, and the second gap is just on the verge of
being closed.

We also have DOS for theH polarization (p polarization!,
and they are shown in Figs. 7~a!–7~c!, for dr50, 0.2, and
0.4, respectively. We note that there are no spectral gaps for
this polarization, so that the very strong dips in the transmis-
sion data@Fig. 4~b!# just represent a gap in theG-X direction
in k space. Once disorder is introduced, the sense of direction

is destroyed and the dips in the transmission are destroyed
very quickly, consistent with the fact that there is no full gap
for this polarization.

The ^ ln(T)& and consequently the localization length also
depends on the filling ratio. At intermediate frequencies,
there may be some drops in the^ ln(T)& ~depending on the
amount of the disorder and the filling ratio! and their position
can be predicted from the gaps of the corresponding periodic
structures. At low frequencies,^ ln(T)& tends to zero. So, the
most natural frequency region to work is at high frequencies
where ^ ln(T)& is almost constant. Making an average of
^ ln(T)& over the frequency region between 20 and 23.5 GHz,
we find the saturated value of the localization length at high
frequencies,l s. Figure 8 shows thel s as a function of the
filling ratio, f . For all the cases we have examined,l s has a
minimum at intermediatef and l s tends to infinity whenf
tends to either zero or one because the system becomes ho-
mogeneous at those two limiting cases. This minimum value
of l s is slightly smaller fors- rather thanp-polarized waves.
Also, for both s- and p-polarized waves@Figs. 8~a! and
8~b!#, the minimum value ofl s is smaller in the case of
dielectric cylinders than in the case of air cylinders. For dis-
order in the radius (dr50.4) and fordielectric cylinders, the
minimum l s is 6.8~7.2! at f around 0.45~0.30! in the case of
s- ~p-! polarized waves; for air cylinders, the minimuml s is
8.3 and 11.1 atf around 0.75 in the case ofs- and
p-polarized waves, respectively. For randomness in the di-

FIG. 7. The same as in the Fig. 6 forp-polarized waves.

FIG. 8. The high-frequency value of the localization length,
l s, for s andp waves@~a! and~b!, respectively# vs the filling ratio,
f . The systems consisting of dielectric~square! and air ~circles!
cylinders with randomness in the radius of the cylinders
(dr50.4). Results for a similar system with dielectric cylinders
and randomness in their dielectric constant are shown~triangles!.
l s is normalized to the lattice constant.
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electric constant of each cylinder (de50.4), theminimum
l s is 5.2 and 7.1 atf around 0.45 and 0.30 in the case ofs-
and p-polarized waves. These results also show that rela-
tively small localization lengths can be achieved not only at
the edges of a gap but also at the high-frequency regions;
note that the smallest value ofl s can be 5.2a @see Fig. 8~a!#.

Using the average value of^ ln(T)& at high frequencies,
we calculate the saturated value of the localization length,
l s, as a function of the dielectric constant,e ~Fig. 9!. The
system consists of air cylinders with filling ratio 0.5 in a
dielectric medium with dielectric constante and disorder is
introduced in the position of the cylinders (d50.2). Ingen-
eral, l s of thes-polarized waves is smaller than thel s of the
p-polarized waves. Also, thel s tends to infinity ase goes to
one ~since, in that case, the system becomes homogeneous!,
while, at high values ofe ~greater than about 20!, l s is almost
constant; this highe value of l s is 3.5 and 3.8 fors- and
p-polarized waves. In general, higher dielectric constant ra-
tios favor the localization of the waves in accordance with
the results of Ref. 15.

The absorption is another factor that may change the
physical picture described previously. Figure 10 shows the
^ln(T)& versus the frequency for the same system as the one
described in Fig. 4 except that the dielectric constant of the
cylinders is 1010.5i instead of 10. In general, the transmis-
sion will be reduced for all frequencies in the presence of the
absorption.23 However, the reduction becomes larger as the
frequency increases, although, there are some exceptions
from this general rule with most notable the frequency re-
gions inside the gaps of the periodic case; in particular, for
the first two gaps of thespolarization, the transmission,T, is
almost the same with that of the nonabsorbing case@compare
solid lines in Figs. 4~a! and 10~a! at around 6 and 11.5
GHz#. This is because the wave penetrates only the first few
layers at frequencies inside the gaps, so it is not affected that
much from the absorption. But, even outside the gap, there
are some exceptions from the general rule. The transmission
of p-polarized waves at 14 and 16 GHz is an order of mag-

nitude smaller than the transmission at 20 GHz@see solid
line in Fig. 10~b!#. This is because the wave at 20 GHz has
its maxima mostly in nonabsorbing regions, while, at 14 and
16 GHz, the waves have their maxima in absorbing regions
~e.g., inside the cylinders!. These differences are inherited
also in the disordered cases, especially, when the amount of
disorder is small. Note that the transmission,T, of the s
polarization is almost unaffected from the absorption for
dr50.2 at around 6.5 GHz~where the first gap was!, but as
the disorder increases, more and more localized states are
created inside the gap, so,T becomes more affected from the
absorption. It has been suggested that the combined effects
of disorder and absorption can be described by the following
formula:29

1

l T
5
1

l
1
1

l a
, ~5!

where l T is the total decay length in the presence of both
absorption and disorder,l is the localization length in the
absence of absorption, andl a is the decay length due to the
absorption and in the absence of disorder.l a is actually given
by the formulal a52c/ve9 wherev is the frequency of the
EM wave ande9 is the imaginary part of the dielectric
constant.32 According to Eqs.~3! and ~5!, by subtracting the
^ ln(T)& of an absorbing case from the corresponding nonab-
sorbing one, the result must be equal to (22L/ l a) which
must be independent of the disorder. Although, it has been

FIG. 9. The high-frequency value of the localization length,
l s, for s and p waves ~squares and circles, respectively! vs the
dielectric constant of the surrounding medium,e0. The system con-
sisting of air cylinders with filling ratio around 0.5 with randomness
in the position of the cylinders (d50.2) andthickness,L525a.
l s is normalized to the lattice constant,a.

FIG. 10. ^ ln(T)& vs the frequency for systems similar with those
in Fig. 4, except that the dielectric constant of the cylinders is
1010.5i .
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shown that this is true in disorder cases where the average
system is homogeneous,32 it is not true in the present disor-
der cases where the average system is a periodic lattice due
to the reasons mentioned earlier in this paragraph. This con-
clusion regarding the effect of the absorption in disorder sys-
tems which are periodic on the average; is the same with the
conclusion reached recently by studying elastic waves propa-
gating in layered systems which are periodic on the
average.33

IV. CONCLUSIONS

The transfer-matrix method has been used successfully for
the calculation of the properties of 2D disordered systems
which are periodic on the average; the corresponding peri-
odic systems consist of cylinders forming a square lattice and
embedded in a different dielectric medium. By introducing
disorder in these periodic systems, the higher gaps, which are
narrow, disappear quickly and the logarithmic average of the
transmission,̂ ln(T)&, or the localization length,l , become
almost constant at relatively high frequencies~v higher than
aboutc/a!. These high-frequency values of the localization
length depend on the filling ratio and they can be as small as
5.2a (a is the lattice constant of the unperturbed periodic
system! for the cases that we studied. On the other hand, for
low frequencies,̂ ln(T)& is not affected by the disorder and it
is close to zero which correspond to very high localization

lengths. At intermediate frequencies, there are large drops in
the ^ ln(T)& which correspond to the lowest two gaps of the
periodic cases; the wider the gaps of the periodic cases are,
the higher the amount of disorder needed to close those gaps.
The gaps of thes-polarized waves are generally wider and
survive at high amount of disorder in contrast with the gaps
of thep-polarized waves where they destroyed easily by the
disorder. A systematic study of the optimum conditions for
the appearance of the gaps have shown that those conditions
are fulfilled for cylinders of high dielectric material with fill-
ing ratio around 0.25 ands-polarized waves; in those cases,
the gaps are wider and they survive even for high amount of
disorder resulting to localization lengths smaller than 5a.

Experiments on 2D disordered systems similar with the
ones studied in the present work can be performed based on
previous experiments in periodic systems.20,21 As we de-
scribed previously, the disorder can be introduced in a well-
controllable way, by either moving apart the cylinders or
changing their radius.
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